TreeMap API for Java-Swing
Developer Guide

Macrofocus GmbH

Version 2025.0.0

Table of Contents

Purpose of This Document

Treemaps Basic

TreeMap API Features

TreeMap API Quick Start
Java/Swing

Data Source
Java/Swing

TreeMap API Architecture
DefaultTreeMapModel
DefaultTreeMapView
DefaultTreeMapController

TreeMap API Customization
Configure the size
Assigning colors
Creating colormaps
Adding a third dimension
Hierarchical grouping
Labeling
Layout Algorithms

Appearance and Rendering Options

Customizing textual display

Tooltip content customization

Interacting with TreeMap API
Probing and selection
Extending TreeMap API

Context menu customization

Handling dynamic data
Scalability

TreePlot

Migrating from JIDE TreeMap
What’s Next

© © 0 00 00 0 N N 09 N9 0o O bk N e

[Y T S e S S S S S ey
O W 00 g o U1 U R NN R O O

Purpose of This Document

Welcome to the Macrofocus TreeMap API. TreeMap API is a Java/Swing aimplementation of the
treemap visualization technique. This developer guide is designed for developers who want to
learn how to use TreeMap API in their applications.

Treemaps Basic

Treemaps graphically represent information about objects by dividing the display into areas
(typically rectangles) that are proportional to the size of each object. It also enables the display
of hierarchical information by nesting each area into subregions. It was invented and first used in
the early 1990s by Ben Shneiderman at the University of Maryland for the management of the disk
space of his server. Treemaps display rows of data as groups of squares that can be arranged, sized
and colored to graphically reveal underlying data patterns. This visualization technique allows
users to explore and easily recognize complicated data relationships.

TreeMap API Features

TreeMap for Java/Swing comes with an extended set of features, including:

» Support for popular Swing TableModel
* Flexible configuration of size, color, and labels of the treemap elements

» Complete set of layout algorithm (including solid squarified and aesthetically-pleasing circular
layout algorithm)

* Cushion rendering to reveal hierarchy intuitively

» Zoomable user interface, including drilling

* Many options to fine-tune the appearance of the display

* Flexible hierarchy definition to create custom aggregation schemes
* Filtering support

* Details on demand provided with popups

» Useful for small datasets already, but scales to 100'000s of data objects

TreeMap API Quick Start

This section contains some examples that demonstrate how easy it is to get up and running with
TreeMap API. The following sections provide much more detail about how to configure your charts
and which features are available, but most developers are eager to get something working quickly,
so here is a quick working example.

The code below will produce the output below. One can see that the area of each rectangle is
proportional to the “Value” column and the colors assigned depending on the “Strength” column.
The values of the “Name” column are used to label each rectangle by filling the entire width and
scaling the font accordingly. While the content of this example is meaningless, it highlights the key
principles and one should be able to extrapolate the use of such a visualization technique when
applied to budget, sales, quality control, fraud detection, and financial data and any other areas
where getting the big picture reveals pattern.

Hello from the Treemap World!

A M Hello from the TreeMap World!

Hell

from

Java/Swing

To use the TreeMap API for Java/Swing, place the treemap-swing.jar, macrofocus-common-jvm.jar
,molap-jvm.jar, mkui-swing.jar, and kotlin-stdlib.jar libraries in your class path. An efficient
starting point is to instantiate the com.treemap.DefaultTreeMap component.

import com.treemap.AbstractTreeMap;
import com.treemap.AlgorithmFactory;
import com.treemap.DefaultTreeMap;

import org.molap.swing.TableModelDataFrame;

import javax.swing.*;
import javax.swing.table.DefaultTableModel;
import javax.swing.table.TableModel;

public class Hello {
public static void main(String[] args) {
// Defining the data, column names and types
Object[][] data = new Object[][]{
{"Hello", 12, 3.0},
{"from", 11, 4.0},
{"the", 9, 5.0},
{"TreeMap", 8, 6.0},
{"World!", 7, 7.0},
Iis
Object[] columnNames = new Object[]{"Name", "Value", "Strength"};
final Class[] columnTypes = new Class[]{String.class, Integer.class, Double
.class};

// Creating a standard Swing TableModel
TableModel tableModel = new DefaultTableModel(data, columnNames) {
public Class<?> getColumnClass(int columnIndex) {
return columnTypes[columnIndex];
}
Irs

// Creating the TreeMap
AbstractTreeMap<Integer,String> treeMap = new DefaultTreeMap<>(new
TableModelDataFrame(tableModel));

// Tuning the appearance of the TreeMap
treeMap.setAlgorithm(AlgorithmFactory.Companion.getSQUARIFIED());
treeMap.setSizeByName("Value");

treeMap.setColor(2);

treeMap.setBackgroundByName("Name");

treeMap.setlabels();

// Creating a frame to display

final JFrame frame = new JFrame("Hello from the TreeMap World!");
frame.setSize (600, 600);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(treeMap.getComponent().getNativeComponent());
frame.setlocationRelativeTo(null);

frame.setVisible(true);

Data Source

Java/Swing

You may read your data from any data sources such as a database table, a file, a piece of data in
memory. The data should be in tabular format that can be converted to TableModel as defined in
Java Swing. From TreeMap API point of view, the only data it will accept is the TableModel. As long
as you convert your raw data to TableModel, you can use it in TreeMap APIL.

TreeMap API Architecture

The com. treemap.TreeMap interface acts as a facade to the TreeMap API model-view-controller (MVC)
architecture. In brief, the controller collects user input, the model manipulates application data,
and the view presents results to the user. This class wraps a TreeMapModel, TreeMapView, and
TreeMapController interfaces together. Its default implementation DefaultTreeMap allows easy
loading of the data and customization of the most common settings. It uses the following
implementations of the interfaces listed above:

DefaultTreeMapModel

The default implementation of the TreeMapModel interface uses a standard Swing TableModel ‘as the
underlying data holder. The default implementation of the ‘TreeMapModel interface will
automatically map the size to the first numerical column, the color to the second numerical
column, the labels to the first categorical column, and the group by to the second categorical
column.

If your data model is not in tabular form, or you want to customize how the data are fed into the
TreeMap, then you can extend the AbstractTreeMapModel class. Key methods to implement are
getChildren(), getParent() ‘and ‘getValueAt().

DefaultTreeMapView

The default implementation of the TreeMapView interface will automatically coalesce multiple
changes to the model to a single repaint operation and has the possibility of updating the display
progressively should very large datasets be displayed.

DefaultTreeMapController

The default implementation of the TreeMapController interface supports probing, selection,
zooming, panning, and drilling operations. Probing is achieved by simply moving the mouse over
the shape of interest and a popup will then display detailed information about that item. Selection
is done through left-mouse click and lasso operations by pressing down the Alt key while dragging
the mouse. Zooming can comfortably be done using a mouse wheel or zooming gesture of a
trackpad. Finally, drilling is supported using the Page-Down and Page-Up keys.

TreeMap API Customization

TreeMap API has been designed with customizability in mind. The most common settings can be
changed through the TreeMap facade. Should this not be enough, the TreeMapSettings class can be
obtained using TreeMap.getModel().getSettings() and provides access to global options, while
TreeMapColumnSettings provides access to field-specific options. Default settings can be changed
using TreeMapSettings.getDefaultColumnSettings() and can be overridden on a field-by-field basis
using TreeMapSettings.getColumnSettings(Column). This provides, for example, with a mean of using
different layout algorithm at each hierarchy level.

Configure the size

As the treemap visualization technique attempts to keep the area of the shapes on the screen
proportional to some data values, it is key to specify which column in the TableModel should be used
as a proxy for the size. This can be specified using one of the following two methods, depending on
whether you prefer to use the column index or the column name:

treeMap.setSize(2);
treeMap.setSizeByName("Value");

The specified column should contain numerical values of type Integer, Float, or Double. If the value
is null, then it will simply not be included in the treemap layout. Since values can be negative but
shapes cannot have negative areas, the default behavior is to use the absolute value. To override
this behavior, it is possible to use another scaling scheme, such as:

treeMap.setScale(ScaleFactory.getInstance().get("Original"));

In this case, negative values will not be included in the treemap layout.

Assigning colors

How each shape should be colored can be defined by using a colormap that will convert numerical
and categorical values into colors according to a defined scale or dictionary. Which column to use
should be defined using its index or name:

treeMap.setColor(2);
treeMap.setColorByName("Strength");

Creating colormaps

To override the default colormap that is assigned to each column, it is possible to set a customized
one, for example:

treeMap.getModel().getSettings().getColumnSettings(treeMap.getModel().getTreeMapColumn
(2)).setColorMap(ColorMapFactory.getInstance().createSequentialColorMap(@, 100);

The ColorMapFactory class provides a range of static methods for creating standard colormaps for
categorical, sequential, and diverging values. The PaletteFactory gives access to a wide range of
predefined color gradients.

A Colormap contains both an Interval and a Palettte, which are conjointly used to map the actual
values into the normalized range (0..1) used to retrieve the colors defined in the palette. To create a
custom colormap and palette that associate -200 to red, 0 to white, and 200 to green, you need to:

MutableColorMap colorMap = new SimpleColorMap(new ClosedInterval(-200, 400),
new InterpolatedPalette(new InterpolatedPalette.Entry(@, Color.red),
new InterpolatedPalette.Entry(0.5, Color.white),
new InterpolatedPalette.Entry(1, new Color(@, 128, 0)))
)i

You can then customize it further by assigning special colors to values that fall outside the range
defined by the Interval by using the setUnderColor() and setOverColor() methods, or to missing
values with the setNullColor () method.

Adding a third dimension

The shapes can extend to the third dimension by specifying the column index or name containing
their relative height:

treeMap.setHeight(2);
treeMap.setHeightByName("Strength");

In conjunction, the maximum relative height (as a percentage of the overall treemap size) of the
shapes can be controlled through:

treeMap.getModel().getSettings().setMaximumHeight(0.05);

Hierarchical grouping

Treemap visualization is a very effective method when used with hierarchical data. To define how
each row of the original TableModel should be grouped and sub-grouped, the list of columns indices
or names can be defined:

treeMap.setGroupBy(4, 5);
treeMap.setGroupByByNames("Region", "Department");

Should your data have an unbalanced hierarchy, you can specify the hierarchal placement of each
row in the TableModel by having a column of type Path.

Labeling

Labels containing values from the original TableModel can be incorporated within each shape,
either as a list where each value is displayed below one another:

treeMap.setlabels(1, 2);
treeMap.setLabelsByName("Value", "Strength");

and/or by filling the entire area with one value:

treeMap.setBackground(9);
treeMap.setBackgroundByName("Name");

Layout Algorithms

TreeMap API includes a wide range of treemap and related layout algorithms:

BINARY_TREE

Uses a static binary tree layout

SLICE

Original slice-and-dice treemap algorithm, which has excellent stability properies but leads to
high aspect ratios

SQUARIFIED

the aspect ratio of each rectangle is kept as close as possible to a square

STRIP

An ordered squarified treemap algorithm

PIVOT_BY_SPLIT_SIZE
Pivot by split size

SPLIT
Split layout

CIRCULAR

Circular treemap layout

VORONOI

Voronoi treemap layout

10

BAR
Bar Char layout

PIE
Pie Chart layout

MATRIX
Matrix Layout

TAG_CLOUD
Tag Cloud layout

The one to use can easily be set using the following method call:

treeMap.setAlgorithm(AlgorithmFactory.SQUARIFIED);

Appearance and Rendering Options

Many options are provided to tune the appearance of the resulting treemap visualization. The most
common is to define whether the shapes should be rendered with a cushion effect that highlight the
hierarchical placement or using a solid color with an optional border:

treeMap.setRendering(RenderingFactory.CUSHION);
treeMap.setRendering(RenderingFactory. FLAT);
treeMap.setRendering(RenderingFactory. FLAT_NO_BORDER);

Another important customization area is to define how the headers of the various groups be
displayed, for example by setting the placement of the header and font to use:

treeMap.setlLabeling(LabelingFactory.TOP_LABELING);
treeMap.setHeaderFont(new Font("Tahoma", Font.BOLD, 16));

Similarly, the font to use to display the labels can be specified as well:
treeMap.setlLabelingFont(new Font("Tahoma", Font.ITALIC, 18));
Finally, the color used for probing and selection can be customized using:

treeMap.getModel().getSettings().setProbingColor(new Color(200, 200, 0));
treeMap.getModel().getSettings().setSelectionColor(Color.orange);

11

Customizing textual display

It is possible to fine tune the appearance and the positioning of the headers, labels, and tooltips by
customizing their respective renderers: TreeMapHeaderRenderer, TreeMaplLabelRenderer, and
TreeMapTooltipRenderer. We provide default implementations for each of them that allow to
customize, for example, the visual effect (drop shadow, glow), the vertical and horizontal alignment
of the text, the minimum number of character to display, and how text should be truncated:

final DefaultTreeMapHeaderRenderer headerRenderer = new DefaultTreeMapHeaderRenderer();

final DefaultTreeMapHeaderRenderer headerRenderer = new
DefaultTreeMapHeaderRenderer();
headerRenderer.setEffect(DefaultTreeMapHeaderRenderer.Effect.Glow);
headerRenderer.setRendering(DefaultTreeMapHeaderRenderer.Rendering.Truncate);
headerRenderer.setHorizontalAlignment(DefaultTreeMapLabelRenderer.CENTER);
headerRenderer.setVerticalAlignment(DefaultTreeMapLabelRenderer.TOP);

treeMap.getView().setHeaderRenderer(headerRenderer);

The foreground, background and effect colors, as well as the font, have to be customized through
the settings:

treeMap.getModel().getSettings().getDefaultColumnSettings().setHeaderForeground(new
Color (156, 156, 156));
treeMap.getModel().getSettings().getDefaultColumnSettings().setHeaderEffectColor(new
Color (50, 50, 50));
treeMap.getModel().qgetSettings().getDefaultColumnSettings().setHeaderBackground(new
Color(96, 96, 96));

treeMap.setHeaderFont(new Font("Tahoma", Font.BOLD, 16));
Setting the appropriate Format to each column can specify how values are formatted:

treeMap.getModel().setFormat(3, new DecimalFormat("#,##0.00 $bil"));

Tooltip content customization

The content of the tooltip can be changed by enabling/disabling the display of particular values and
labels:

treeMap.getModel().getSettings().setShowPopup(treeMap.getModel().getTreeMapColumn(7),
true);
treeMap.getModel().qgetSettings().getColumnSettings(treeMap.getModel().getTreeMapColumn
(7)) .setShowLabel(true);

12

In addition, the width of the tooltip and its type can be adjusted. The Painted tooltip type will clip
any region outside the TreeMap component, while the Lightweight type allows for overflow within
the application window, and the Heavyweight type relies on a native borderless window that is only
limited by the size of the display.

treeMap.getView().qgetToolTip().setPreferredWidth(190);
treeMap.getView().getToolTip().setType(ToolTipType.Heavyweight);

Furthermore, a tailored implementation of the TreeMapToolTip interface, or an extension of the
DefaultTreeMapToolTip can be provided. The Global2000Demo exemplify what can typically be
achieved.

13

Interacting with TreeMap API

Probing and selection

The selected nodes can be retrieved using TreeMapModel.getSelection(). The node currently under
the mouse can be accessed using TreeMapModel.getProbing(). It is possible to turn off multiple
selection by using the DefaultTreeMapController.setMultipleSelectionEnabled() method.

14

Extending TreeMap API

Context menu customization
The TreeMapController controls the content of the popup menu. It can be extended with additional

entries using:

treemap.getController().getPopupMenu().insert(new JSeparator(), 0);
treemap.getController()getPopupMenu().insert(new AbstractAction("Do something") {
public void actionPerformed(ActionEvent e) {
// Place code to do something here

}, 0);

15

Handling dynamic data

There is a DefaultTreeMapModel.setTableModel() method that can be used to swap the current
TableModel. Best is however to have the table model send appropriate events on data update instead
of replacing the entire model, but both are supported. There is a demo (DynamicPortfolioDemo) that
exemplifies both approaches. Changing the structure of the data, such as the number of columns,
their names and types, is currently not supported.

16

Scalability

TreeMap API has been designed with performance in mind. Datasets containing 100'000s of data
objects can be handled. To assess the effectiveness of the treemap view, one can display timing
information using the TreeMapView.setShowTiming(true) method.

Drawing text on screen is an expensive operation and this is the main consideration to take into
account when faced with performance issues. Reducing the amount of labels to be displayed can
typically solve this. Better yet is the possibility of progressively showing the labels in an iterative or
incremental manner and without blocking the user interface. This mode, which is disabled by
default, can be enabled using:

treemap.getView().setProgressive(TreeMapView.Progressive.Incremental);

Further speed improvements can be obtained by disabling anti-aliasing, the cushion effect, and the
use of the 3rd dimension.

17

TreePlot

The TreePlot component allows you to create a scatter plot of the data. Any combination of
numerical variables can be used to map to the x- and y-axes as well as size and color of the glyphs.
The TreePlot component follows the same architecture as the TreeMap API component, and can be
instantiated with a TreeMapModel to have the TreeMap and the TreePlot synchronized, or with a
TableModel to use it independently.

18

Migrating from JIDE TreeMap

The migration from JIDE TreeMap should be straightforward. Simply change the package names
from com.jidesoft.treemap, com.jidesoft.colormap, and com.jidesoft.palette to com.macrofocus and

you should be all set.

19

What’s Next

There are still many features that we want to add to this product but haven’t got a chance to do so.

1. Improve documentation for creating custom colormaps.
2. Include TreeTable wrapper.
3. Show how to encode Path information for single cell value.

4. Provide support for animated transitions.

If you have any feedbacks and suggestions, please feel free to email us.

20

	TreeMap API for Java-Swing Developer Guide
	Table of Contents
	Purpose of This Document
	Treemaps Basic
	TreeMap API Features
	TreeMap API Quick Start
	Java/Swing

	Data Source
	Java/Swing

	TreeMap API Architecture
	DefaultTreeMapModel
	DefaultTreeMapView
	DefaultTreeMapController

	TreeMap API Customization
	Configure the size
	Assigning colors
	Creating colormaps
	Adding a third dimension
	Hierarchical grouping
	Labeling
	Layout Algorithms
	Appearance and Rendering Options
	Customizing textual display
	Tooltip content customization

	Interacting with TreeMap API
	Probing and selection

	Extending TreeMap API
	Context menu customization

	Handling dynamic data
	Scalability
	TreePlot
	Migrating from JIDE TreeMap
	What’s Next

